
Journal of Sound and <ibration (2001) 256(1), 131}153
doi:10.1006/jsvi.2001.4206, available online at http://www.idealibrary.com on
LINE FORCE RECEPTANCE OF AN ELASTIC
CYLINDRICAL SHELL WITH HEAVY EXTERIOR FLUID

LOADING

E. A. SKELTON

Department of Mathematics, Imperial College of Science, ¹echnology and Medicine, Huxley Building,
180 Queen1s Gate, ¸ondon S=7 2BZ, England. E-mail: e.skelton@ic.ac.uk

(Received 24 July 2001, and in ,nal form 12 November 2001)

A time-harmonic line force is applied to an in"nite elastic cylindrical shell immersed in
compressible #uid. The force may also have axial harmonic dependence. The formal solution
for the shell displacement is obtained as the sum of circumferential harmonics and evaluated
in the asymptotic limit of heavy exterior #uid-loading. The resulting asymptotic expressions
for the elements of the receptance matrix, either at the line of application of the force, or
elsewhere on the shell surface, are simple trigonometric functions of the shell and #uid
parameters, and show excellent agreement with numerical evaluation of the circumferential
harmonic series over a wide frequency range.
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1. INTRODUCTION

Many marine and aerospace structures can be modelled basically by elastic plates and
cylindrical shells. The motion of the basic structure is then modi"ed by the addition of other
internal structures such as machinery, or ribs or struts to strengthen the structure. Much
work has been carried out on the theory of the vibration of in"nitely long cylindrical elastic
shells. Greenspon [1] provides a useful survey of this work up to 1960. Warburton [2]
included the e!ects of an acoustic medium. More recent work by Fuller and Fahy [3],
Fuller [4] and Scott [5] has also investigated the vibration and acoustics of the #uid-loaded
cylindrical shell. A feature of these papers is that because the shell geometry is axisymmetric
the displacements, forces, pressures, etc. may all be expanded as Fourier series in the
circumferential co-ordinate, and the shell equations are such that the di!erent harmonics
are uncoupled from each other.
With the addition of sti!ening, or other structures, the reaction forces at the intersections

of the sti!ening and the original structure must be related to the displacement there, so that
both displacements may be made equal and the reaction forces equal and opposite. One of
the simplest geometries for this intersection is a line. Much theoretical work has been
carried out on elastic plates with line constraints, for example references [6}9], which make
use of this receptance method.
For cylindrical shells the e!ects of axisymmetric ring sti!eners have been addressed by

many authors, for example references [10}12]. Wilken and Soedel [10] use the receptance
method to analyze a ring-sti!ened cylinder with no #uid-loading. Mead and Bardell [11]
also consider cylinders with no #uid-loading, but use a variational method to calculate the
forces. Skelton [12] has used the receptance method to calculate reaction forces when
#uid-loading is included, and has also obtained results in the asymptotic limit of heavy
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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exterior #uid-loading, which is appropriate to the case of thin steel shells in water at low
frequencies, for example. In problems of this type, the axisymmetric geometry again ensures
that the equations for each circumferential harmonic are uncoupled from those of the other
harmonics.
Axially sti!ened cylinders are also used in underwater vehicles and the aerospace

industry, and these have been the subject of many investigations, for example references
[13}21]. With an axial constraint, the geometry is no longer axisymmetric and hence the
circumferential harmonics are coupled. Reddy and Mallik [13] considered periodic axial
sti!eners and expanded the quantities as harmonic series considering the excitation by each
harmonic in turn. Their solution, therefore, involves the numerical evaluation of several
in"nite series. Mead and Bardell [14] use the periodic nature of the sti!eners to "nd
eigenvalues for an in vacuo shell with sinusoidal variation along the shell. Their method
does not involve receptance evaluations, but requires corresponding in"nite sum
evaluations. Bjarnason et al. [15] use the Lagrange equation formulation to investigate
a shell with an internal plate, variously attached to it, immersed in #uid. Their method also
involves numerical calculation of the shell mobility (related to the receptance) from an
in"nite series. More recently, a series of papers [16}20] by Guo investigated various
acoustic scattering and radiation problems related to an in"nite elastic cylindrical shell,
immersed in #uid, with two axial line constraints due to the attachment of an internal elastic
plate, or a mass}spring system. These use the receptance method and require numerical
evaluation of in"nite summations to calculate the receptances of the shell. A similar
geometry, but with the plate located on a diameter, was considered by Baillard et al. [21],
who used elasticity theory to model the shell, and successfully compared their results both
with those obtained from shell theory and experimentally.
Thus, the subject of in"nite elastic cylindrical shells with axial line constraints may be

seen to be an active research area with practical applications. In this paper the (3�3)
receptance matrix for the cylindrical shell relating the radial, axial and circumferential
displacement components to the corresponding components of a line force applied parallel
to the axis of the shell are derived. The applied line force may have exp(i�z) variation,
corresponding to the type of reaction force expected in the case of an obliquely incident
acoustic wave, for example. The elements of the receptance matrix, which are in the form of
in"nite series, are then evaluated asymptotically in the limit of heavy exterior #uid-loading,
which is appropriate to the practical case of a steel shell in water at low frequencies,
for example. The resulting asymptotic expressions for the receptance elements, either
at the force application line or elsewhere on the shell surface, are simple trigonometric
functions of the shell and #uid parameters, which show excellent agreement with numerical
results over a wide frequency range. These results may, therefore, be used both to avoid
evaluating the in"nite summations, which may converge slowly, and to interpret subsequent
results.

2. EQUATIONS OF MOTION OF THE LINE-EXCITED SHELL

It is natural to use the usual cylindrical polar co-ordinate system, (r, z, �), to analyze this
problem in cylindrical geometry. A time-harmonic line force, whose amplitude may depend
on the axial location, z, is applied to the shell at some constant value of �, �"�

�
. Since the

co-ordinate axes may be rotated if necessary it is su$cient to consider only the case �
�
"0.

The displacement of the cylindrical elastic shell is assumed to satisfy the Donnell}Mushtari
equations of motion, for which the e!ects of rotary inertia are neglected. Hence,
the equations of motion for the shell may be obtained as (see, for example the book
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by Junger and Feit [22])

�
a

�u
�

�z
#

1

a�
�u

(
��

#

u
�
a�

#���a�
��u

�
�z�

#2
��u

�
�z����

#

1

a�
��u

�
����#

�
�
(1!��)

E

��u
�

�t�

"(1!��)[F
�
(z, t)�(�)!p

�
(a, z, �)]/Eh, (1)

��u
�

�z�
#

(1!�)
2a�

��u
�

���
#

(1#�)
2a

��u
(

���z
#

�
a

�u
�

�z
!

�
�
(1!��)

E

��u
�

�t�

"!(1!��) F
�
(z, t)�(�)/Eh, (2)

(1#�)
2a

��u
�

���z
#

(1!�)
2

��u
(

�z�
#

1

a�
��u

(
���

#

1

a�
�u

�
��

!

�
�
(1!��)

E

��u
(

�t�

"!(1!��)F
(
(z, t)�(�)/Eh, (3)

in which a is the mean radius of the shell, h is its thickness, ��"h�/12a�, E, � and �
�
are,

respectively, Young's modulus, the Poisson ratio and the density of the shell material,
p
�
(a, z,�) is the acoustic pressure in the exterior #uid and F

�
(z, t)�(�), F

�
(z, t)�(�) and

F
(
(z, t)� (�) represent the force per unit area applied to the shell in the radial, axial and

circumferential directions.
In this problem it will be assumed that the applied forces are all time-harmonic, with

radian frequency �, and that the axial variation of each of the applied forces, and hence of
all the other quantities is exp(i�z), where � is a constant which may be proportional to the
excitation frequency. Thus, for example,

F
�
(z, t)"F

�
exp(i�z!i�t). (4)

The exponential factor exp(!i�t) will be omitted from all subsequent equations.
The pressure in the exterior #uid is an outgoing wave solution of the reduced wave

equation

(� �#k�)p
�
(r, z, �)"0, r'a, (5)

where k"�/c is the acoustic wavenumber in the exterior #uid in which the sound speed is
c, and which satis"es the boundary condition of continuity of radial displacement at the
shell surface, r"a,

�p
�

�r �
���

"���u
�
, (6)

where � is the density of the exterior #uid.
It is convenient in this cylindrical geometry to express the shell displacements, acoustic

pressure and the applied forces as Fourier series with respect to the circumferential
co-ordinate �. The �(�) function which occurs in each of the applied force terms may thus
be expanded as
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where e
�
"1, and e

�
"2 for n*1, and the shell displacements may be written in the form
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from which it follows that the exterior pressure is

p
�
(r, z,�)"���e���

�
�
���

(u
��
cos n�#v

��
sin n�) H

�
(	r)/	H


�
(	a), (9)

where 	"�k�!��, and H
�
"J

�
#iY

�
is the Hankel function of the "rst kind where J

�
and

Y
�
are Bessel functions of the "rst and second kinds, respectively, which is the outgoing

wave solution of the reduced wave equation (5) which satis"es the boundary condition (6).
By substituting these expressions for the displacements, pressure and forcing terms into

the equations of motion (1)}(3) for the shell, the following matrix equations relating the shell
displacement components for each harmonic to the applied forces are obtained:
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in which E
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"Eh/(1!��). Hence, inverting these equations and rearranging the terms

�
u
��
cos n�#v

��
sin n�

u
��
cos n�#v

��
sin n�

u
(�
sin n�!v

(�
cos n��"e

��
S��
��
cos n� S��

��
cos n� !S��

��
sin n�

S��
��
cos n� S��

��
cos n� !S��

��
sin n�

S��
��
sin n� S��

��
sin n� S��

��
cos n� � �

F
�
F
�
F

(
� (13)

and thus from equation (8) the shell displacements may be related to the applied line forces

�
u
�
(z,�)

u
�
(z,�)

u
(
(z,�)�"e���A(�, �) �

F
�

F
�

F
(� , (14)



RECEPTANCE OF A CYLINDRICAL SHELL 135
where the (3�3) receptance matrix A (�, �) is
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In these, and all subsequent equations, the notation S��
��
is used to mean (S��)

��
, i.e., the ijth

element of the inverse of the matrix S. In the general case the elements of A(�, �) may be
evaluated numerically, by truncating the in"nite sum at a suitably large "nite number. In
the next section they will be evaluated asymptotically for the limiting case of heavy exterior
#uid-loading, which is appropriate to many practical underwater structures over
a substantial range of low frequencies. It may also be noted here that the shell mobility [4,
15] relates the velocity components to the applied force components. Hence for the
time-harmonic oscillations considered here the mobility matrix is !i�A.

3. ASYMPTOTIC EVALUATION OF THE RECEPTANCE MATRIX FOR HEAVY
EXTERIOR FLUID-LOADING

Before evaluating the in"nite sums of equation (15) asymptotically it is convenient to
make the following de"nitions, as in reference [12]:
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Here D is the bending sti!ness of a plate with the same thickness as the shell, �
�
is the

#uid-loaded free wavenumber of such a plate in the heavy #uid-loading limit, and �
�
is the

in vacuo free wavenumber of the plate. Heavy #uid-loading means here, as in the plate case
[9], that
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These heavy #uid-loading requirements can also be expressed in terms of the density of
the exterior #uid: � must be large compared to both of �

�
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. They

may also be expressed in terms of the frequency: � must be small compared to both
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/D)�	�.

Although not linked to the heavy #uid-loading requirement it may also be noted here
that only the case when

�)k and hence 	)k (21, 22)

is considered here.
In the analysis which follows, the leading order term of each element of A(�, �) will be

evaluated separately in the asymptotic limit of heavy #uid loading. For example, noting that
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it is clear that as �PR, for "xed values of n and �, the leading order term of S��
��
is

proportional to an O(1/�) term, or equivalently to an O(1/�

�
) term. Thus, any sum over

a "nite range of n will also have this behaviour. Hence, the asymptotic form of any in"nite
sums in the asymptotic limit of heavy #uid-loading may be obtained by replacing the
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summand by its form for large n, which is inaccurate only over a "nite, �-independent, range
of n and thus leads to a correction which is O(1/�).
By making use of the expressions (12) for the elements of S it is clear that, for large values

of n, � may be written as
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By using the asymptotic form for large order Hankel functions given in, for example
reference [23],
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It remains therefore to evaluate this in"nite sum in the limit of large �
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a. This may be

accomplished by rearranging it as
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and then making use of the Poisson summation theorem to facilitate evaluation of the sum.
The Poisson summation theorem states that (see, for example reference [24]):

If g(x) is continuous and of bounded variation on (!R,R) and tends to 0 as �x�PR such
that ��

��
g(x)dx converges, then

�
�

	���

g(�m)"
1

�
�
�

����

G(2n�/�) (32)

where G(s) is the Fourier transform of g(x),

G(s)"	
�

��

g(x)e�i�
dx. (33)

The function de"ned as

g(x)"
�x�ei
�(�

(�x�
!(�
�
a)
)

(34)



RECEPTANCE OF A CYLINDRICAL SHELL 137
satis"es all the requirements stated in the Poisson summation theorem, above, when the
small amount of damping in the shell is included, and with �"1 the left-hand side of
equation (32) is the sum required in equation (31). Thus,
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When the arguments of the exponentials in the integrand above are zero, the integral may
be evaluated exactly using contour integration, by closing the contour with an arc at in"nity
subtending an angle 2�/5 at the origin, and returning to the origin along the straight line to
close the contour, thus enclosing only a single pole at x"�

�
a. Thus,
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For sO��� the integral in equation (36) is regarded as the sum of two terms which are
treated separately. The integration contour for the "rst integral is closed by an arc in the
lower half-plane, returning to the origin along the negative imaginary axis. This contour
encloses only the pole located at �
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The integrand on the right-hand side of equation (38) decays exponentially with z and so
only the contribution to the integral near to 0 will be signi"cant. This, however, is
O(1/(�

�
a)
) and is thus of the order of terms which have already been neglected, so this will

also be neglected. The pole contribution is exponentially small as �
�
aPR and will also

therefore be neglected here. The integration contour for the second integral of equation (36)
may be closed by the corresponding contour in the upper half-plane. Hence
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Combining these results, the leading order terms are found to be,
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in which, if �"0, the value of G(0) is given by equation (37), and if �O0 it is given by
equation (40). After noting that the in"nite sum remaining on the right-hand side of
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equation (41) is a geometric progression, whose sum is therefore well known, and some
simpli"cation of the resulting expressions it can be shown that
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Numerical checks have shown that this asymptotic result gives good agreement with
numerical results for values of �

�
a�0)75 and excellent agreement when �

�
a�1. However,

when these expressions for the in"nite sum are substituted into the asymptotic expression
(30) forA

��
(�, �) and checked against a numerical evaluation of equation (15) the results are

disappointing. For a given value of � graphs of A
��
as a function of frequency exhibit

a large number of peaks. The frequencies at which these peaks occur di!ers considerably
between the numerical and asymptotic values, although the envelope of the magnitude
shows good agreement. From the method described above it is clear that peaks occur when
the real poles of the function g(x) are equal to an integer. A small error in the pole location
thus can have a large e!ect on the location of the peak, but a small error in the magnitude of
the envelope function. The method may be repeated using a more accurate function for g(x),
for example from equation (28):
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it is clear that for heavy #uid-loading �
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A simple interpretation of equation (45) is that the radial motion generated as a result of
applying a radial line force to the cylindrical shell consists of disturbances which decay with
distance from the application line, together with waves propagating away from the
application line helically around the shell, whose wavenumbers in the tangential direction,
$�

�
, are, in the heavy #uid-loading limit, the wavenumbers in the tangential direction of

bending waves, propagating at angles tan��(�
�
/�) to the axial direction, in an equivalent

#uid-loaded plate. The heavy #uid-loading ensures that the decaying disturbance is only
signi"cant near to �"0. This is re#ected in the cot(2�/5) term in equation (45). The
propagating waves, however, travel around the shell, and if an integer number of their
wavelengths "t around the shell circumference reinforcement will occur leading to a
standing wave pattern of growing magnitude. This reinforcement thus occurs when �

�
a is

an integer, or equivalently, sin ��
�
a"0. Thus peaks in A

��
may be predicted at those

frequencies for which sin��
�
a"0 at all values of � except at the nodes of the standing wave

pattern. At these resonance frequencies the nodes occur when 2���a is an odd number of
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half-wavelengths, hence ����
�
a is an odd number of multiples of �/2, as is (�!���)�

�
a, and

nodes thus occur when cos((�!���)�
�
a) is zero. From this it may be deduced that if � is

a rational multiple of � of the form �"�l/m, where l and m have no common factors and
m is even, then in any frequency interval for which the receptance at 0 or � exhibits m peaks
the receptance at � will exhibit only (m!1) peaks. Thus, the formal analysis leading to
equation (45) has produced analytic expressions for the receptance which are in agreement
with a physical interpretation. In addition to predicting the frequencies of resonance,
however, equation (45) also provides explicit expressions for the receptance at non-resonant
frequencies. This can be important, for example, in predicting and understanding the peaks
in the scattered sound "eld in line-constrained problems where the reaction force
amplitudes depend on both frequency and geometry. That analysis is beyond the scope of
this paper and will be reported separately.
The remaining elements of A(�, �) will also be evaluated in the heavy #uid-loading limit.
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and replacing the summand by its large n form to obtain the leading order term in the heavy
#uid-loading, �
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aPR, asymptotic evaluation allows it to be written as
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)
cos n�, (47)

where S��
��
has already been approximated in two ways above. In the analysis which follows,

for simplicity of exposition, it will be approximated using equation (29), but with the
reservation that if the "nal result contains terms of the type cot(�

�
a�), etc. then �

�
will be

replaced by �
�
, as if equation (28) had been used to approximate it. After some algebra it

may be shown that the remaining factors in equation (47) may be expressed exactly, as

(S
��
S
��

!S
��
S
��
)"!E�

�
i�(1!�)(n�!B�)/2a�, (48)

(S
��
S
��

!S
��
S
��
)"E�

�
(1!�)(n�!P�)(n�!Q�)/2a�, (49)

where

P�"a�(�
�
��h/E

�
!��), Q�"a�(2�

�
��h/E

�
(1!�)!��), (50, 51)

B�"!�Q�, (52)

where these parameters are independent of both n and the #uid-loading parameter. Thus,
using partial fractions,

(S
��
S
��

!S
��
S
��
)

(S
��
S
��

!S
��
S
��
)
"i�a�

X

n�!Q�
#

>

n�!P��, (53)

where

X"

(Q�!B�)

(Q�!P�)
, >"

(!P�#B�)

(Q�!P�)
, (54, 55)

and hence the asymptotic form of A
��
(�, �) for heavy #uid-loading is

A
��
(�, �)&

i�a

D

�
�
���
�

X

(n�!Q�)
#

>

(n�!P�)�
e
�
n cos n�

(n
!(�
�
a)
)
. (56)
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Evaluating sums of this form in the heavy #uid-loading limit using, for example, the Poisson
summation theorem described above, shows that

�
�
���

e
�
n cos n�

(n�!Q�) (n
!(�
�
a)
)

&O�
ln(�

�
a)

(�
�
a)
 �. (57)

Thus,

A
��
(�, �)&O�

ln(�
�
a)

(�
�
a)
 � as �

�
aPR. (58)

Similarly, from equation (15)

A
��
(�, �)"!

�
�
���

e
�
S��
��
sin n�"!

�
�
���

e
�

(S
��
S
��

!S
��
S
��
)

�
sin n�. (59)

Clearly, this is identically zero when ���"0, 2�, 4�,2. For other values of� the asymptotic
heavy #uid-loading approximation is obtained as before:

A
��
(�, �)&!

�
�
���

e
�
S��
��

(S
��
S
��

!S
��
S
��
)

(S
��
S
��

!S
��
S
��
)
sin n�, (60)

and, for large n,

(S
��
S
��

!S
��
S
��
)

(S
��
S
��

!S
��
S
��
)
&!

1

n
, as nPR. (61)

Thus,

A
��
(�, �)&

a�

D

�
�
���

e
�
sin n�

n
!(�
�
a)


"

a� sign(�)

iD

�
� 


����

nei����

�n�(�n�
!(�
�
a)
)

"

a� sign(�)

iD

�
�

	���

g(m), (62)

in which the 
 on the summation indicates that n"0 is omitted, and where

g(x)"
f (x)ei
�(�

( �x�
!(�
�
a)
)
, (63)

with f (x) any suitable, continuous function chosen to ensure that g(x) satis"es the
requirements of the Poisson summation theorem, for example,

f
�
(x)"�

1 for x*1/N,

Nx for �x�)1/N,

!1 for x)!1/N.

(64)

Thus, when N is large

G(s)"	
�

�

(e�i����(��
!ei����(��
)

x
!(�
�
a)


dx, (65)

and clearly

G(���)"0. (66)
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For sO���, using contour integration to close the integration contour in either the upper or
lower halves of the complex plane, as before, the heavy #uid-loading form ofG is found to be

G(s)&!

2�i
5(�

�
a)�
sign(s!���)ei����(����� as �

�
aPR, sO���. (67)

Thus, after evaluating another geometric series and simplifying the resulting expressions

�
�

	���

g(m)&!

2�i
5(�

�
a)�

sin ((���!�)�
�
a)

sin (��
�
a)

. (68)

Noting again that the pole location is better approximated by �
�
a where this is the root of

equation (44), the heavy #uid-loading asymptotic approximation toA
��
(�, �) is obtained as

A
��
(�, �) �

,0, if ���"0, 2�, 4�,2,

&

2�
5D��

�

sign(�)
sin((�!���)�

�
a)

sin(��
�
a)

, if ���(2�, �O0,
as �

�
aPR. (69)

This may be interpreted as the leading order radial motion generated as a result of applying
a line force in the tangential direction consists of waves propagating helically away from the
line force, again with tangential wavenumbers $�

�
, the wavenumber in the tangential

direction of bending waves in an equivalent #uid-loaded plate, which again form a standing
wave pattern if an integer number of wavelengths "t around the circumference. Hence the
possible peaks in a graph of A

��
may be predicted to occur at the same frequencies as those

ofA
��
. In the radial force case the disturbance is an even function of �, but with a tangential

force it is an odd function of �. Hence�"0 and � are nodes of the standing wave pattern. If
� is any rational multiple of �, �"�l/m, where l andm have no common factors, then nodes
of the standing wave pattern occur at � for one of each m possible successive resonance
frequencies, and hence the corresponding peaks will be omitted from a graph of A

��
as

a function of frequency. By comparing equations (45) and (69) it may be seen that the
magnitude ofA

��
is smaller than that of A

��
by a factor which is of order 1/�

�
a in the heavy

#uid-loading limit.
From equation (15)

A
��
(�, �)"

�
�
���

e
�
S��
��
cos n�"!

�
�
���

e
�
S��
��
cos n�"!A

��
(�, �). (70)

Hence,

A
��
(�, �)&O �

ln(�
�
a)

(�
�
a)
 � as �

�
aPR. (71)

Similarly,

A
��
(�, �)"

�
�
���

e
�
S��
��
cos n�. (72)

The (2, 2) element of the inverse matrix of S may be written

S��
��

"(S
��
S
��

!S
��
S
��
)/�

"

S
��

(S
��
S
��

!S
��
S
��
)

#

1

��
S
��
S
��
(S

��
S
��

!S
��
S
��
)!S

��
S
��
(S

��
S
��

!S
��
S
��
)

(S
��
S
��

!S
��
S
��
)

!S
��
S
���, (73)
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using the de"nition of � given by equation (24), where the "rst term is independent of the
#uid-loading parameter, and the second term is O(1/(�

�
a)
) and is of the type noted

previously. For large values of n, using equations (12) the second term may be
approximated as

1

�
�2&

S��
��
n�

as nPR. (74)

Applying the method described previously to this component of A
��
(�, �) would, therefore,

give pole contributions of higher order in 1/� than those already neglected in forming the
approximation. Thus, only the O(1), "rst term of equation (73) needs to be evaluated to "nd
the leading order asymptotic approximation to A

��
(�, �). An expression for (S

��
S
��

!

S
��
S
��
) is given by equation (49). In terms of Q, S

��
, given by equation (12i) may be written

S
��

"E
�
(n�!(1!�)Q�/2)/a�. (75)

Thus,

A
��
(�, �)&

2a�

E
�
(1!�)�

�
�
���

e
�
(n�!(1!�)Q�/2) cos n�

(n�!Q�)(n�!P�)
#O�

1

(�
�
a)
��. (76)

These terms may not be replaced by their form for large values of n, but may be expressed in
terms of partial fractions as

A
��
(�, �)&

1/(1#�)
�
�
��h �

�
�
���

e
� �
Q�(1#�)
(n�!Q�)

!

2P�!(1!�)Q�

(n�!P�) � cos n�#O�
1

(�
�
a)
��, (77)

where sums of this form are given in, for example reference [25, p. 40], or may be evaluated
using the Poisson summation theorem method, as

�
�
���

e
�
cos n�

(n�!Q�)
"!

� cos[Q((2m#1)�!���)]
Q sinQ�

, 2m�)���)(2m#2)�. (78)

By setting m"0 in equation (78) the relevant range ���)2� is obtained. However, as noted
after equation (42), in order for the peak frequencies to agree with those obtained
numerically the poles must be located fairly accurately. The poles of S��

��
do not in general

occur at exactly P and Q, but at the zeros of � near to P and Q, P
�
and Q

�
say, which di!er

from P and Q by an O(1/�) correction and which may be approximated for heavy
#uid-loading as

P
�
&P!F(�, P)/2PE�

�
(1!�)(P�!Q�)S

��
(�, P), (79)

Q
�
&Q#F(�, Q)/2QE�

�
(1!�)(P�!Q�)S

��
(�, Q), (80)

where

F(�, n)"S
��
(S

��
S
��

!S
��
S
��
)!S

��
(S

��
S
��

!S
��
S
��
), (81)

and in which H
�(	a)/H� (	a) may be further approximated if required as

H
�(	a)/H� (	a)&�
i!1/2	a ��	a,

!��1!i(e	a/2�)��/	a ��	a.
(82)
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Using equation (78), and noting the more accurate values for the pole locations, P
�
and Q

�
,

the leading order asymptotic approximation for A
��
(�, �) is thus

A
��
(�, �)&

�/(1#�)
�
�
��h �

(2P�!(1!�)Q�)

P

cosP
�
(�!���)

sin �P
�

!Q(1#�)
cosQ

�
(�!���)

sin �Q
�

�,
���)2� as �

�
aPR, (83)

where P and Q are given in equations (50, 51) and P
�
and Q

�
by equations (79}82). Each of

the terms making up A
��
in equation (83) has the same form as those in equation (45), but

with the tangential wavenumbers given by $P
�
and $Q

�
, respectively, which are

independent of the #uid density, as are their amplitudes, and may thus be interpreted in
a similar way to equation (45) but with the appropriate wavenumbers. It should be noted
here that depending on the size of � either P

�
or both P

�
and Q

�
may be imaginary. If either

of them is imaginary then the shell displacement corresponding to that wavenumber simply
decays with distance from the application line and hence cannot lead to resonant behaviour,
or peaks in the graph of A

��
as a function of frequency. It may be noted here that when

�"0 equation (83) reduces to the exact result

A
��
(0, �),!

�Q cosQ(�!���)
�
�
��h sin �Q

. (84)

The element A
��
(�, �) is

A
��
(�,�)"!

�
�
���

e
�
S��
��
sin n�"

�
�
���

e
�

(S
��
S
��

!S
��
S
��
)

�
sin n�. (85)

Clearly, this is identically zero when ���"0, 2�, 4�,2. For other values of � the summand
is manipulated as follows:

(S
��
S
��

!S
��
S
��
)

�
"

S
��

(S
��
S
��

!S
��
S
��
)

#

1

��
S
��
S
��
(S

��
S
��

!S
��
S
��
)!S

��
S
��
(S

��
S
��

!S
��
S
��
)

(S
��
S
��

!S
��
S
��
)

!S
��
S
���. (86)

The "rst term of this is again independent of the #uid-loading parameter, and the second
term isO(1/(�

�
a)
) and is of the type noted previously. For large values of n, using equations

(12) the second term may be approximated as

1

�
�2&

S��
��
n�

as nPR, (87)

which ensures that any pole contributions to the Poisson summation evaluation of the sum
of the second term would be proportional to O(1/(�

�
a)) terms and thus of higher order than

the O(1/(�
�
a)
) terms already neglected in making the approximation. Thus, only the "rst,

O(1) term of equation (86) needs to be summed in order to "nd the leading order asymptotic
approximation to A

��
(�, �) for heavy #uid-loading. Hence, making use of equations (12f )

and (49), A
��
(�, �) may be written as

A
��
(�, �)"!sign(�)

i�(1#�)a�
E

�
(1!�) �

�
�
���

e
�
n sin n���

(n�!Q�) (n�!P�)
#O�

1

(�
�
a)
��. (88)



144 E. A. SKELTON
This in"nite summation may be evaluated by noting that

�
�
���

e
�
n sin n ���

(n�!Q�)(n�!P�)
"

1

P�!Q�

�
�
���
�

1

(n�!P�)
!

1

(n�!Q�)� e�n sin n���

"

1

Q�!P�

d

d ���
�
�
���
�

1

(n�!P�)
!

1

(n�!Q�)� e� cos n���, (89)

and that the method for summations of this type was used to calculate A
��
. Thus, noting

again that the pole locations are more accurately described as P
�
and Q

�
,

A
��
(�, �) �

,0, if ���"0, 2�,2

&

i�a� sign(�)
�
�
��h �

sinP
�
(�!���)

sinP
�
�

!

sinQ
�
(�!���)

sinQ
�
� �, if ���(2�, �O0,

as �
�
aPR. (90)

Each of the terms making up A
��
in equation (90) has the same form as those in equation

(69), but with tangential wavenumbers given by $P
�
and $Q

�
, respectively, and may be

interpreted in a similar way to equation (69), but using the appropriate wavenumbers.
From equation (15)

A
��
(�, �)"

�
�
���

e
�
S��
��
sin n�"

�
�
���

e
�
S��
��
sin n�"!A

��
(�, �). (91)

Hence,

A
��
(�, �) �

,0, if ���"0, 2�, 4�,2,

&!

2�
5D��

�

sign(�)
sin ((�!���)�

�
a)

sin (��
�
a)

, if ���(2�, �O0,
as �

�
aPR.

(92)

Similarly,

A
��
(�, �)"

�
�
���

e
�
S��
��
sin n�"!

�
�
���

e
�
S��
��
sin n�"A

��
(�, �). (93)

Hence,

A
��
(�, �) �

,0, if ���"0, 2�,2

&

i�a� sign(�)
�
�
��h �

sinP
�
(�!���)

sinP
�
�

!

sinQ
�
(�!���)

sinQ
�
� � , if ���(2�, �O0,

as �
�
aPR. (94)

The remaining element A
��
(�, �) is evaluated in a similar way to A

��
(�, �). Hence, from

equation (15)

A
��
(�, �)"

�
�
���

e
�
S��
��
cos n�, (95)

where

S��
��

"(S
��
S
��

!S
��
S
��
)/�

"

S
��

(S
��
S
��

!S
��
S
��
)
#

1

� �
S
��
S
��
(S

��
S
��

!S
��
S
��
)!S

��
S
��
(S

��
S
��

!S
��
S
��
)

(S
��
S
��

!S
��
S
��
) �,

(96)
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in which the second term, which isO(1/(�
�
a)
), may be approximated for large values of n, as

1

�
�2&

S��
��
n�

as nPR, (97)

which is su$cient to ensure that any pole contributions to the Poisson summation
evaluation of the sum of the second term of equation (96) would be proportional to
O(1/(�

�
a)
) terms and thus of the same order as those already neglected in making the heavy

#uid-loading approximation. Thus, again only the O(1) "rst term of equation (96) needs to
be used in equation (95) to "nd the leading order term of A

��
(�, �). Writing, from equation

(12e),

S
��

"E
�
(1!�)(n�!R�)/2a�, (98)

where

R�"a�(2�
�
��h/E

�
!2��)/(1!�), (99)

allows the leading order term of A
��
(�, �) to be expressed as

A
��
(�, �)&

a�

E
�
�

�
�
���

e
�
(n�!R�) cos n���
(n�!Q�)(n�!P�)

#O�
1

(�
�
a)
��

&

1

�
�
��h

1!�
1#��

�
�
���

e
��
Q�!R�

n�!Q�
#

R�!P�

n�!P�� cos n���#O�
1

(�
�
a)
��. (100)

These are sums which have been evaluated in equation (78). Thus, noting again the
corrected pole locations P

�
and Q

�
,

A
��
(�, �)&

�
�
�
��h

1!�
1#��

(R�!Q�) cosQ
�
(�!���)

Q sin�Q
�

#

(P�!R�) cosP
�
(�!���)

P sin �P
�

�,
���)2� as �

�
aPR, (101)

where P and Q are given in equations (50, 51), P
�
and Q

�
by equations (79}82), and R is

given by equation (99). The structure of equation (101) is similar to that of equation (83) and
may be interpreted in a similar way. Thus equations (45), (58), (69), (71), (83), (90), (92), (94)
and (101) provide heavy #uid-loading asymptotic approximations to all the elements of
A(�, �), and show explicitly the dependence of these quantities on the parameters of the
problem.

4. NUMERICAL RESULTS

The leading order asymptotic results for heavy #uid-loading, derived in section 3, have
been evaluated numerically, for a steel cylindrical shell, for which the values
E"19)5�10��, �

�
"7700, �"0)29 have been used, of radius 5 m and thickness 0)05 m,

surrounded by water, �"1000, c"1500. A small amount of damping has been included in
the calculations by including the complex factors (1!i�

�
) and (1!i�) in E and c,

respectively, where �"�
�
"0)001. It should be noted that in the absence of damping, and

unless P
�
or Q

�
is imaginary, the asymptotic results for the receptance are either purely real

or purely imaginary, with in"nite values possible at the peak frequencies. The introduction
of a small amount of damping introduces a correspondingly small imaginary or real part,
respectively, to the receptance and ensures that whilst the peak values are large they are
"nite, with that value determined by the amount of damping. The numerical results con"rm
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Figure 1. Re�A
��
(�, �) for steel shell, a"5, h"0)05, in water, as a function of frequency (Hz). �"k cos �,

�"453: (a) �"03; (b) �"303; (c) �"903; (d) �"1803:**, asymptotic result (45); }} }, numerical summation.
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this, but as the small imaginary or real part due to the damping adds little extra to the
comparison of the asymptotic and numerical results they are omitted here for reasons of
space unless the real and imaginary parts are of comparable magnitude. The real and/or
imaginary parts are presented here rather than, for example, the modulus because the sign
(or phase) of the receptance is important in problems with line constraints. The asymptotic
results are compared with results obtained from a numerical summation of the "rst 1000
terms of equation (15). In the results presented here �, the axial wavenumber, is proportional
to the excitation frequency, �"k cos �, and the graphs are all functions of frequency
f"�/2�. The maximum frequency shown in each plot is 500 Hz, corresponding to
ka+10)5, and chosen to illustrate the range of applicability of the asymptotic results. The
asymptotic results are shown as a solid line and the numerical summation as a broken line.
Figure 1 shows the results of plotting the real part of A

��
(�, �) for �"453, and �"0, 30,

90 and 1803. As discussed after equation (45), the frequencies at which peaks occur coincide
for�"0 and 1803. At �"303, (�/6), every sixth peak is missing, and at�"903, (�/2), every
second peak is missing compared to those at �"0 and 1803. Over most of the frequency
range shown, the asymptotic and numerical results are indistinguishable. At the higher
frequencies there are very slight discrepancies in the frequencies at which peaks occur,
which presumably could be reduced if required by including extra terms in equations (43)
and (44) to obtain a more accurate value for �

�
. Further results, not presented here, show

that the accuracy of the asymptotic result remains very good when the frequency is
increased to more than 1000 Hz, even though the assumptions of heavy #uid-loading,
inequalities (19, 20), are not satis"ed then. Corresponding plots of the imaginary part of
A

��
, on the same scale also show excellent agreement between the asymptotic and

numerical results and indicate that it is approximately zero except near the peaks in the real
part, and are omitted here.
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Figure 2. Re�A
��
(�, �) for steel shell, a"5, h"0)05, in water, as a function of frequency (Hz). �"k cos �,

�"903: (a) �"03; (b) �"303; (c) �"903; (d) �"1803:**, asymptotic result (45); }} }, numerical summation.
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Figure 2 shows the results of plotting the real part of A
��
(�,�) for �"903 and �"0, 30,

90 and 1803. Again, the imaginary part on the same scale is approximately zero except near
the peaks in the real part, and is omitted here. There is again excellent agreement between
the asymptotic and numerical results. The frequencies at which peaks occur di!er from
those obtained when �"453, but the frequencies for peaks when�"03 again coincide with
those for �"1803, whilst for �"303 every sixth peak is missing and for �"903 every
second peak is missing.
Figure 3 shows the results of plotting the real part of A

��
(�, �) for �"453, �"30 and

903, and �"903, �"30 and 903. Clearly, if �"0 or 1803A
��
(�,�) is identically zero. There

is good agreement between the asymptotic and numerical results, although the curves can
be distinguished at the lower frequencies shown. As predicted, the frequency of each of the
peaks shown in Figures 3(a) and 3(b) is also the frequency of a peak in Figures 1(a) and 1(d).
Compared to Figures 1(a) and 1(d), Figure 3(a) has every sixth peak missing, and Figure 3(b)
has every second peak missing. As predicted, however, these are not the same missing peaks
as those of Figures 1(b) and 1(c). Similarly, the frequency of each of the peaks shown in
Figures 3(c) and 3(d) is also the frequency of a peak in Figures 2(a) and 2(d), and compared
to Figures 2(a) and 2(d) Figure 3(c) has every sixth peak missing and Figure 3(d) has every
second peak missing. These are also not the same missing peaks as those in Figures 2(b)
and 2(c).
Figure 4 shows the real part of A

��
(�, �) for �"453, �"0, 30, 90 and 1803. The

numerical and asymptotic results exhibit excellent agreement. These plots di!er from the
previous plots because the level is much lower, and there are no sharp peaks. The level just
decreases as the frequency is increased. This is because the value of P calculated from

equation (50) is imaginary if cos �'c��
�
/E(1!��), which for a steel shell in water is

equivalent to �(71)853, and Q calculated from equation (51) is imaginary if

cos �'c�2�
�
/E(1!��)(1!�), which for a steel shell in water is equivalent to �(58)493.
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Figure 3. Re�A
��
(�, �) for steel shell, a"5, h"0)05, in water, as a function of frequency (Hz). �"k cos �:

(a) �"453, �"303; (b) �"453, �"903; (c) �"903, �"303; (d) �"903, �"903: **, asymptotic result (69);
numerical summation.
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Figure 4. Re�A
��
(�, �) for steel shell, a"5, h"0.05, in water, as a function of frequency (Hz). �"k cos �,

�"453: (a) �"03; (b) �"303; (c) �"903; (d) �"1803:**, asymptotic result (83); }} }, numerical summation.
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Thus, for �"453, both P and Q are approximately imaginary and no sharp peaks are
expected. Figure 5 shows the real part of A

��
(�, �) for �"903, �"0, 30, 90 and 1803. The

numerical and asymptotic results are identical, as noted in equation (84). These plots di!er
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Figure 5. Re�A
��
(�, �) for steel shell, a"5, h"0)05, in water, as a function of frequency (Hz). �"k cos �,

�"903: (a) �"03; (b) �"303; (c) �"903; (d) �"1803: **, asymptotic result (83); numerical summation.

(a) (b)× ×

Figure 6. Im�A
��
(�, �) for steel shell, a"5, h"0)05, in water, as a function of frequency (Hz). �"k cos �,

�"453: (a) �"303; (b) �"903: **, asymptotic result (90); numerical summation.
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considerably in character from those of Figure 4. When �"903, both P and Q are
approximately real and hence sharp peaks occur in the plots at frequencies for which Q is
approximately an integer. Again, it is evident from these "gures that for �"0 and 1803 the
frequencies of the peaks are identical. For �"903 every second peak is missing, and
although the frequency range plotted in Figure 5(b) is not large enough to show this for
�"303 every sixth peak is missing. Since there are far fewer peaks in Figure 5 than in
Figure 2 the tangential wavenumber for motion of the shell which is predominantly
longitudinal is much less than the tangential wavenumber for predominantly bending
motion in this steel shell.
Figure 6 shows the imaginary part of A

��
(�, �) for �"453, �"30 and 903. A

��
(�, �) is

identically zero when �"0 or 1803. At frequencies above approximately 100 Hz the
asymptotic and numerical results show good agreement. The asymptotic result exhibits no
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Figure 7. A
��
(�, �) for steel shell, a"5, h"0.05, in water, as a function of frequency (Hz). �"k cos �, �"803:

(a) Re�A
��

, �"303; (b) Im�A
��

, �"303; (c) Re�A
��

, �"903; (d) Im�A
��

, �"903: **, asymptotic result
(90); **, numerical summation.

(a) (b)

(c) (d)

× ×

××

Figure 8. Re�A
��
(�, �) for steel shell, a"5, h"0)05, in water, as a function of frequency (Hz): �"k cos �,

�"453; (a)�"03; (b)�"303; (c) �"903; (d)�"1803:**, asymptotic result (101); } } }, numerical summation.
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sharp peaks because �"453 is in the range where P and Q are imaginary. At frequencies
below approximately 100 Hz the numerical result di!ers from the asymptotic result and
also exhibits sharp peaks. The levels of the asymptotic results are low, compared even to
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Figure 9. A
��
(�, �) for steel shell, a"5, h"0)05, in water, as a function of frequency (Hz). �"k cos �, �"903:

(a) Re�A
��

, �"03; (b) Im�A
��

, �"03; (c) Re�A
��

, �"303; (d) Im�A
��

, �"303; (e) Re�A
��

, �"903; (f )
Im�A

��
, �"903; (g) Re�A

��
, �"1803; (h) Im�A

��
, �"1803: **, asymptotic result (101); }} }, numerical

summation.
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those of Figure 4. The sharp peaks evident at the low frequencies are due to the O(1/(�
�
a)
)

terms, neglected in the asymptotic evaluation, which are not negligible at the low
frequencies when compared to the small O(1) term which is, however, the leading order
term. This interpretation was con"rmed by increasing the value of the exterior #uid density,
which resulted in the numerical result agreeing with the asymptotic result. For these angles,
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the real part ofA
��
is small on the same scale and is neglected here. For �"903,A

��
(�, �) is

identically zero. As an example of the case when P and Q are approximately real, Figure 7
shows the real and imaginary parts of A

��
(�, �) for �"803 and �"30 and 903. In this case

the real and imaginary parts are of comparable magnitude, and the levels are higher than
those of Figure 6. There is good agreement between the asymptotic approximation and the
numerical evaluation at all the frequencies shown, although at the very low frequencies
((50 Hz) there is some slight evidence of the O(1/(�

�
a)
) terms in the numerical result.

Figure 8 shows the real part of A
��
(�, �) for �"453, �"0, 30, 90 and 1803. The

imaginary part is negligible, except for peaks in the numerical result corresponding to peaks
in the real part. It is not presented here. The asymptotic results in Figure 8 are typical of
those for which P and Q are approximately imaginary, cf., Figure 4. As in Figure 6, at the
low frequencies the numerical result shows sharp peaks which are due to the O(1/(�

�
a)
)

terms neglected in the leading order asymptotic evaluation which may nevertheless be large
compared to the leading order term which is O(1), if �

�
a is not su$ciently large. Figure 9

shows both the real and imaginary parts of A
��
(�, �) for �"903, �"0, 30, 90 and 1803.

The real and imaginary parts are of comparable magnitudes. The agreement between the
asymptotic and numerical evaluations is good, although again at the low frequencies the
numerical result exhibits some sharp peaks which are neglected in the leading order
asymptotic approximation. For these angles P and Q are approximately real, but the peaks
in both the real and imaginary parts of A

��
are much smoother than the corresponding

peaks of A
��
in Figure 5 and A

��
in Figure 7.

5. CONCLUSIONS

The usual method for calculating the displacement of an in"nite elastic cylindrical shell
involves expanding all the displacements as series of circumferential harmonics. Here
a method for evaluating the sum of these harmonics in the asymptotic limit of heavy
exterior #uid-loading has been presented. It results in simple expressions involving only
trigonometric functions for the displacement components when the shell is excited by a line
force, either at the force application point, or elsewhere on the shell circumference. The
numerical examples presented here show that these asymptotic approximations exhibit
excellent agreement with results obtained by summing a large number of circumferential
harmonics, over a wide frequency range. Thus, these simpler expressions may be used
instead of performing the harmonic expansion which may require many terms. In addition,
the dependence on the parameters of the shell and #uid is made explicit in expressions (45),
(58), (69), (71), (83), (90), (92), (94) and (101) allowing the straightforward interpretation of the
results, and their application to problems involving line constraints.
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